
J. Fluid Mech. (2007), vol. 572, pp. 145–177. c© 2007 Cambridge University Press

doi:10.1017/S0022112006003545 Printed in the United Kingdom

145

On the effects of microbubbles on Taylor–Green
vortex flow

By ANTONINO FERRANTE AND SAID E. ELGHOBASHI
Department of Mechanical and Aerospace Engineering, University of California, Irvine,

CA 92697, USA

(Received 19 December 2005 and in revised form 15 July 2006)

The paper describes a numerical study of the effects of microbubbles on the vorticity
dynamics in a Taylor–Green vortex flow (TGV) using the two-fluid approach. The
results show that bubbles with a volume fraction ∼10−2 enhance the decay rate
of the vorticity at the centre of the vortex. Analysis of the vorticity equation of
the bubble-laden flow shows that the local positive velocity divergence of the fluid
velocity, ∇ · U , created in the vortex core by bubble clustering, is responsible for
the vorticity decay. At the centre of the vortex, the vorticity ωc(t) decreases nearly
linearly with the bubble concentration Cm(t). Similarly, the enstrophy in the core of
the vortex, ω2(t), decays nearly linearly with C2(t). The approximate mean-enstrophy
equation shows that bubble accumulation in the high-enstrophy core regions produces
a positive correlation between ω2 and ∇ · U , which enhances the decay rate of the
mean enstrophy.

1. Introduction
We have demonstrated (Ferrante & Elghobashi 2004, 2005) that, in a microbubble-

laden spatially developing turbulent boundary layer, the microbubbles create a local
positive divergence of the fluid velocity, ∇ · U > 0. This positive ∇ · U generates a
fluid mean velocity normal to the wall, which, in turn, displaces the quasi-streamwise
longitudinal vortical structures away from the wall to a zone of smaller mean shear,
thus reducing the enstrophy in these structures. The result is a reduction in both the
production of turbulence kinetic energy in the vicinity of the wall and the effectiveness
of the sweep events, and hence a diminishing of the wall skin friction.

However, the spatially developing turbulent boundary layer is a complex three-
dimensional flow in which the vortical structures, being subjected to strong shear,
undergo shape deformation and vorticity (magnitude and direction) modulation even
in the absence of microbubbles. The main objective of the present study is to examine
the two-way interaction between microbubbles and geometrically well-defined vortical
structures whose vorticity direction is invariant and whose magnitude may undergo
only negligible modification in the absence of microbubbles. Taylor–Green vortex
flow (TGV) is an ideal flow that satisfies our requirements.

We have performed numerical simulations of a two-dimensional TGV laden with
microbubbles using the two-fluid (or Eulerian–Eulerian) approach to examine the
effects of the microbubbles on the fluid-velocity divergence, ∇ · U , and the subsequent
modifications of the vorticity field. In order to perform these simulations we developed
a novel numerical method to solve the two-fluid equations for bubble-laden flows with
an average bubble concentration C0 ∼ 10−2.
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Our results for bubbles with Stokes number equal to 0.25 and volume fraction 1 %
show that the magnitude of the vorticity at the centre of the vortex decays faster
than that for single-phase flow. After 20 turnover times of the initial vortex, the
magnitude of the vorticity at the centre of the vortex becomes 34 % smaller than that
for single-phase flow. Analysis of the vorticity equation for bubble-laden flow shows
that the local positive velocity divergence of the fluid velocity, ∇ · U , created in the
vortex core by bubble clustering, is responsible for the vorticity decay.

Various studies in the literature have discussed the interaction between bubbles
and vortices, e.g. Maxey (1987b), Ruetsch & Meiburg (1993),Wang & Maxey (1993),
Druzhinin & Elghobashi (1998, 2001), Sridhar & Katz (1999), Mazzitelli, Lohse &
Toschi (2003) and Djeridi, Gabillet & Billard (2004). However, none of these studies
has analysed the effects of microbubbles on TGV or explained the link between ∇ · U
and the reduction in vorticity.

The next section provides a description of the governing equations and a summary
of the numerical method, whose details are given in Appendix A. Section 3 describes
simulation results for a single-phase TGV and for a bubble-laden TGV. This is
followed by the concluding remarks and Appendices A and B. Appendix B gives a
comparison of the results obtained from two-fluid and Lagrangian simulations of a
bubble-laden TGV.

2. Mathematical description
2.1. Governing equations

In the present study we adopt the two-fluid (or Eulerian–Eulerian) formulation for
the description of bubble-laden flow. This formulation is obtained by volume- or
ensemble-averaging the governing conservation equations of two-phase flows. Volume
averaging has been employed by Drew (1983), Drew & Passman (1999) and Sirignano
(2005), whereas Zhang & Prosperetti (1997) and Marchioro, Tanksley & Prosperetti
(1999) used ensemble averaging.

We assume that the bubbles are non-deformable spheres of diameter db much
smaller than the characteristic length scale of the flow, Lf . The bubble phase is
treated as a continuum characterized by its velocity, Vi(x, t), and concentration (or
volume fraction)

C(x, t) = n(x, t) Vb, (2.1)

where n(x, t) is the bubble number density and Vb is the volume of a single bubble.
The continuity and momentum conservation equations of the carrier fluid and bubbles
are averaged over a length scale Lave much smaller than Lf ,

db � Lave � Lf . (2.2)

Equation (2.1) is valid for the condition

(db/2Ln)
2 � 1, (2.3)

where Ln is the macroscopic length scale of variation the bubble number density in n

(Prosperetti & Zhang 1995). Throughout this manuscript we will use, for brevity, the
term ‘bubbles’ to denote ‘microbubbles’ which satisfy (2.2) and (2.3).

We treat the bubbles as rigid spheres, under the assumption of ‘dirty’ bubbles,
i.e. that in non-purified liquid water the gas–liquid interface is solidified owing to
the presence of impurities (Detsch 1991; Rightley & Lasheras 2000). The density
of the bubble gas, ρb, is assumed to be negligibly small compared with that of the
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ν ω0 kx kz

10−5 100 2π 2π

Table 1. Properties of the carrier flow.

surrounding liquid, ρ, i.e. ρb/ρ � 1. Thus, the bubbles are assumed to be massless rigid
spheres. Bubble–bubble interactions are neglected. The bubble equation of motion,
(2.7), below, includes the terms representing the carrier-fluid inertia, the added mass,
the Stokes drag, the buoyancy (Maxey & Riley 1983; Druzhinin & Elghobashi 1998)
and the lift force (Auton 1987). In two-way coupling, the effects of the bubbles on
the fluid are taken into account in both the continuity and momentum equations of
the fluid, (2.4) and (2.5) below, via the concentration C(x, t) and the bubble–fluid
coupling force fi(x, t). We write the governing equations for a bubble-laden flow
(Drew 1983; Zhang & Prosperetti 1997; Drew & Passman 1999; Marchioro et al.
1999; Sirignano 2005) as follows:

(i) carrier-fluid continuity,

∂t (1 − C) + ∂j [(1 − C) Uj ] = 0; (2.4)

(ii) carrier-fluid momentum,

∂t [(1 − C) Ui] + ∂j [(1 − C) Ui Uj ] = −(1 − C)∂iP + ν ∂j [(1 − C) (∂j Ui + ∂i Uj )]
− fi + (1 − C) gi; (2.5)

(iii) bubble-phase continuity,

∂tC + ∂j (C Vj ) = 0; (2.6)

(iii) bubble-phase momentum,

dVi

dt
= 3

DUi

Dt
+

1

τb

(Ui − Vi + Vti) + [(U − V ) × ω]i . (2.7)

In the above dimensionless equations, Ui(x, t) and Vi(x, t) are the components
of the instantaneous fluid (liquid) velocity U(x, t) and the bubble-phase velocity
V (x, t), respectively, P (x, t) is the pressure and ν is the dimensionless kinematic
viscosity (table 1). The non-dimensionalization of the governing equations (2.4)–(2.7)
is performed using a reference velocity Uref = 1 m s−1, a length scale Lref =0.1 m

and a fluid density ρref = 103 kg m−3, such that for the prescribed Reynolds number
(Re = Uref Lref /νref = 1/ν = 105) the dimensional kinematic viscosity is that of liquid
water, i.e. νref = 10−6 m2 s−1. The parameters in tables 1 and 2 have been non-dimen-
sionalized accordingly.

The coupling force fi(x, t) in (2.5) is calculated according to Druzhinin &
Elghobashi (1998) as

fi = −C

(
DUi

Dt
− gi

)
(2.8)

where gi is the component of the acceleration due to gravity in the i-direction. In
(2.7) and (2.8), D/Dt ≡ ∂t + Uj ∂j is the time derivative following a fluid element.
In (2.7), d/dt ≡ ∂t + Vj ∂j is the time derivative in a frame moving with the bubble
phase, and the bubble response time τb is defined according to Stokes drag law as

τb =
d2

b

36ν
; (2.9)
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Case C0 St τb (×103) db(×104)

A 0.01 0.25 2.5 9.5
B 0.001 0.25 2.5 9.5
C 0.02 0.25 2.5 9.5
D 0.01 0.1 1.0 6.0
E 0.01 0.5 5.0 13

Table 2. Physical parameters for the test cases of the bubble-laden TGV.

Vti is the bubble terminal velocity in a quiescent fluid (Vti = −2τb gi). In the present
study we set the acceleration due to gravity equal to zero, gi = 0; thus Vti = 0.

The last term on the right-hand-side of (2.7) gives the lift force according to Auton
(1987); here ω(x, t) is the vorticity. It should be noted that Auton’s expression is for a
sphere in an inviscid rotational flow, whereas Saffman’s lift force (Saffman 1965) Li ,

Li

1
2
ρ Vb

=
19.38

πdb

[(Uj − Vj ) (∂iUj )]
ν1/2

‖∂iU‖1/2
, (2.10)

is for a sphere in a linear shear at small Reynolds number. Our simulation results
indicate that neither lift expression significantly modifies the effects of bubbles on the
vorticity of the TGV (figure 7). We thus adopt Auton’s in our computations.

For the case of vanishingly small bubble volume fraction (C � 1) the effects of the
bubbles on the carrier fluid are negligible (one-way coupling), and the carrier-fluid
continuity and momentum equations, (2.4) and (2.5), reduce to the incompressible
Navier–Stokes equations,

∂jUj = 0, (2.11)

∂tUi + ∂j (Ui Uj ) = −∂iP + ν ∂j∂jUi + gi. (2.12)

2.2. Initial and boundary conditions

The initial fluid-velocity field for two-dimensional Taylor–Green vortex flow (Taylor
1923) is prescribed as follows:

U1(x, 0) = −ω0
kz

k2 cos(kx x) sin(kz z),

U2(x, 0) = 0,

U3(x, 0) = ω0
kx

k2 sin(kx x) cos(kz z),

(2.13)

where ω0 is the initial maximum vorticity (ω = ∂zU1 − ∂xU3), kx and kz are the
wavenumbers in the x- and z-directions, and k2 = k2

x+k2
z . The dimensionless parameters

required to characterize the carrier flow are given in table 1.
The bubble-phase velocity components are set equal to those of the carrier fluid at

time t =0:

Vi(x, 0) = Ui(x, 0). (2.14)

The initial bubble-concentration field is prescribed as a uniform constant throughout
the computational domain:

C(x, 0) = C0. (2.15)

The values of C0 and other dimensionless physical parameters for the five test cases
studied are given in table 2, where St denotes the Stokes number, defined as

St = τb ω0. (2.16)
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In cases B, A and C the Stokes number was kept constant (St = 0.25) while the bubble
volume fractions, C0, for the three cases were 0.001, 0.01 and 0.02, respectively. In
cases D, A and E the bubble volume fraction was kept constant (C0 = 0.01) while the
Stokes numbers were 0.1, 0.25 and 0.5, respectively. Case E had the largest bubble
diameter among the cases studied, with db � �x/8 for a computational mesh with
uniform grid spacing ∆x = 0.01; thus conditions (2.2) and (2.3) were satisfied in all five
test cases A–E. For the prescribed reference length scale Lref =0.1 m, the dimensional
bubble diameter is 100 µm in cases A–C, 63 µm in case D and 137 µm in case E.

Periodic boundary conditions are applied in the three spatial directions. Although
the flow being studied is two-dimensional we use a three-dimensional computational
domain but with only two planes in the y-direction. The results to be presented in
§ 3 were obtained using a uniform mesh of 96 × 2 × 96 grid points in the x-, y- and
z-directions, respectively. The dimensionless lengths of the computational domain
were Lx = Lz =1 and Ly = 2∆x.

2.3. Numerical method

The governing equations (2.4)–(2.7) are solved numerically using a newly developed
predictor–corrector method similar to that described by Najm, Wyckoff & Knio (1998)
for simulating unsteady combustion in two dimensions. The predictor uses a second-
order Adams–Bashforth time-integration scheme to time-advance the velocities Ui

and Vi and the scalar field C. The corrector uses a second-order Crank–Nicolson
time-integration scheme. In order to satisfy the continuity equation of the carrier
fluid, (2.4), a Poisson equation for the pressure is solved in both the predictor and
corrector steps, and a pressure correction is applied to the velocity field Ui . We use
a staggered Cartesian grid where we compute the scalar fields P and C at the cell
centres, and the velocity components at the centres of the cell sides. The spatial
derivatives in (2.5) and (2.7) are computed via second-order central differencing.
In order to ensure the positivity of the scalar field C, the spatial derivatives in
(2.6) are computed using a MUSCL-TVD (monotone upstream-centred scheme for
conservation laws – total-variation-diminishing) scheme (Van Leer 1979; Hirsch 1990,
pp. 552–553) with the ‘Superbee’ flux-limiter function developed by Roe (1985). Our
results show that this numerical scheme conserves the bubble concentration C at all
times, as evidenced by the negligible (<10−14) absolute value of the error (C0−〈C〉)/C0,
where 〈C〉 denotes the instantaneous spatially averaged C over the (x, z)-plane. It
should be noted that the lagrangian–eulerian-mapping (LEM) method proposed by
Druzhinin & Elghobashi (1998) for the bubble-laden-flow equations with one-way
coupling is non-conservative.

Our results for the two-way coupling cases show that the numerical solution
obtained using only the predictor steps described in Appendix A is stable until the
maximum bubble concentration, Cm(t), reaches approximately 0.25. The additional
corrector steps stabilize the solution until Cm(t) reaches 0.5 (figure 16). For the one-
way coupling simulations the corrector steps are not required since the numerical
solution for one-way coupling, with only the predictor, is stable for large Cm(t)/C0

ratios (figure 6). The details of the numerical method for both two-way and one-way
coupling simulations are given in Appendix A. The present two-fluid formulation
differs from the Lagrangian method used in our recent papers on microbubble drag
reduction (Ferrante & Elghobashi 2004, 2005). An independent validation of either
method is lacking at present. Thus, we compare the results of the Lagrangian and
two-fluid simulations of the bubble-laden TGV in Appendix B.
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Figure 1. Instantaneous contours of the vorticity ω/ω0 at time t = 0.2 in one-way coupling.

3. Results
3.1. Single-phase Taylor–Green vortex

The Taylor–Green vortex flow (TGV) is a two-dimensional array of counter-
rotating vortices (figure 1), whose vorticity decays in time owing to viscous diffusion
(∂t ω = ν ∇2ω). TGV is an exact solution of the time-dependent incompressible Navier–
Stokes equations for a single-phase flow (Taylor 1923). The analytical solution
of (2.11), (2.12) with the initial conditions (2.13) gives the instantaneous velocity
components as

U1(x, t) = −ω0

kz

k2
cos(kx x) sin(kz z) exp(−νk2t),

U2(x, t) = 0,

U3(x, t) = ω0

kx

k2
sin(kx x) cos(kz z) exp(−νk2t) .

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.1)

The corresponding vorticity is

ω(x, t) = ∂zU1 − ∂xU3 = −ω0 cos(kx x) cos(kz z) exp(−νk2t) . (3.2)

Figure 2 gives the analytical x-profile of ω/ω0 at z = 0.5 and time t = 0.2 together with,
for comparison, our numerical solution of (2.11) and (2.12) for the initial conditions
(2.13). The time t =0.2 equals 20 turnover times of the initial vortex (ω0 = 100). The
figure shows that the analytical and numerical solutions for ω are identical.

3.2. Bubble-laden Taylor–Green vortex with one-way coupling

In this section we describe the numerical solution of the governing equations (2.11),
(2.12), (2.6) and (2.7) for a bubble-laden TGV with one-way coupling, i.e. the bubbles
do not affect the fluid motion.

In § 2.1 we assumed the bubbles to be massless spheres since the density of their
gaseous content is much smaller than that of the surrounding liquid. Thus, once
bubbles are released in a TGV they move along spiral trajectories (see the dashed
arrows in figure 3) towards the nearest vortex centre, mainly owing to their added
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Figure 2. Instantaneous x-profile of ω/ω0 at z = 0.5 and time t = 0.2 for single-phase TGV:
analytical equation, (3.2) (solid line); numerical solution (symbols).
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Figure 3. Instantaneous velocity vectors for the fluid, U (solid arrows), and bubble phase, V
(dashed arrows), at time t = 0.2 for case A (with one-way coupling).

mass and the pressure-gradient terms contained in DU/Dt (figure 4), the first term
on the right-hand side in (2.7). Consequently the bubble concentration C increases
with time in the high-enstrophy regions and decreases in the low-enstrophy regions
(figures 1 and 5). In reality there is a maximum value of C within a finite domain
based on the maximum number of spheres that could be packed in a cube. This
value ranges from π/4 in two dimensions to π/6 in three-dimensions. However, we
constrained C only to be positive using the MUSCL-TVD scheme in discretizing the
spatial derivatives in (2.6), i.e. we did not prescribe an upper limit for C. The growth
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Figure 4. Instantaneous DU/Dt vectors at time t = 0.2 in a two-dimensional TGV.
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Figure 5. Instantaneous contours of the bubble concentration C at time t = 0.2 for case A
(with one-way coupling).

rate of the maximum concentration, Cm(t), increases with time initially (figure 6),
but as bubbles accumulate at the vortex centre the growth rate diminishes and tends
to zero asymptotically with time. The following approximate analytical solution for
the temporal development of Cm(t) in the case of one-way coupling was derived
by Druzhinin & Elghobashi (1998) under the assumption of small Stokes number
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Figure 6. Temporal development of Cm/C0 for cases A–E with one-way coupling.
Approximate analytical equation, (3.3): · · ·, A, B, C; · · · � · · ·, D; · · · � · · ·, E. Numerical
solution from (2.7) with no lift: – –, A, B, C; – � –, D; – � –, E. Numerical solution from (2.7)
with Auton’s lift: ———, A, B, C; —–�——, D; —�—, E.

(St2 � 1) and neglecting the lift term in (2.7):

Cm(t)

C0

= exp

{
2τb

ν

(
ω0

kxkz

k3

)2

[1 − exp(−2νk2t)]

}
. (3.3)

In figure 6 our numerical solution for Cm(t)/C0 is given, together with, for comparison,
curves corresponding to (3.3) for Stokes numbers 0.5, 0.25 and 0.1 (cases E, A and D,
respectively). As the Stokes number decreases, the accuracy of the analytical solution
(3.3) improves as expected, resulting in better agreement with our numerical solution.
Figure 6 also shows that the growth rate of Cm(t) increases with Stokes number; we
increase the Stokes number by augmenting the bubble response time; τb, via db in
(2.9). Increasing τb reduces the radially outward drag force in (2.7) and thus increases
the inward bubble acceleration toward the vortex centre, since DUi/Dt is not affected
by the bubbles in this one-way coupling case.

3.3. Bubble-laden Taylor–Green vortex with two-way coupling

We now discuss the effects of bubbles on the dynamics of the Taylor–Green vortex.
The numerical results presented in this section were obtained by solving the governing
equations (2.4)–(2.7).

3.3.1. Effects of microbubbles on the dynamics of vorticity

Figure 7 gives the instantaneous x-profiles of the vorticity (ω ≡ ωy) at the middle
plane of the computational domain, z =0.5 (figure 1), and at time t = 0.2 for case
A with one-way and two-way coupling. The figure shows that the bubbles cause a
reduction in the vorticity magnitude in the central region of the vortices (figure 1)
and no significant change elsewhere. The maximum reduction in vorticity magnitude
(34 % at t = 0.2) occurs at the centres of the vortices (xc =0.0, 0.5, 1.0 and zc = 0.5).
Figure 7 also shows that the lift expressions of Auton and of Saffman produce nearly
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Figure 7. Instantaneous profiles of ω/ω0 at z =0.5 and time t =0.2 for case A: one-way
coupling (dashed line); two-way coupling with no lift (dotted line), Saffman’s lift
(small-and-large-dashed line) and Auton’s lift (solid line) in (2.7).
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Figure 8. Temporal development of ωc/ω0 for case A: one-way coupling (dashed line);
two-way coupling (solid curve).

identical results. Figure 8 gives the temporal developments of the vorticity magnitude
ωc(t) at the centre of the vortex,

ωc(t) = |ω(xc, zc, t)|, (3.4)

for case A with one-way and two-way coupling. In the one-way-coupling case,
the vorticity ωc(t) remains nearly invariant in time because the viscous diffusion
of vorticity normalized by the initial maximum enstrophy is much smaller than 1
(|ν∇2ω|/ω2

0 � 8 × 10−6). For the two-way-coupling case at time t = 0.2, ωc(t) is reduced
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by about 34 % from its initial value (figures 7 and 8), and by about 46 % at time
t = 0.25 (figure 8).

In order to explain how the bubbles reduce the vorticity in the central region
of the vortices (figures 7 and 8), we examine the vorticity equation. The curl of the
momentum equation of the carrier fluid (2.5) produces the following vorticity equation
for a bubble-laden flow:

∂t ω︸︷︷︸
I

= ν ∇2ω︸ ︷︷ ︸
II

− (U · ∇) ω︸ ︷︷ ︸
III

+ (ω · ∇) U︸ ︷︷ ︸
IV

−ω(∇ · U)︸ ︷︷ ︸
V

− 2ν

(1 − C)2
[∇(1 − C)] × [∇(1 − C) · S]

︸ ︷︷ ︸
VI

+
2ν

(1 − C)
∇ × [∇(1 − C) · S]︸ ︷︷ ︸

VII

+
1

(1 − C)2
[∇(1 − C)] × f

︸ ︷︷ ︸
VIII

− 1

1 − C
∇ × f︸ ︷︷ ︸

IX

, (3.5)

where ω is the vorticity,

ω = ∇ × U, (3.6)

and S is the strain-rate tensor,

S ≡ 1
2
[∇ U + (∇ U)T ]. (3.7)

In (3.5), terms I–IV constitute the vorticity equation of an incompressible single-phase
flow. Terms V –IX are due to the presence of the bubbles. In the following we describe
the physical meaning of the terms on the right-hand side of (3.5).

(i) Terms V , III and IV originate from the nonlinear advection term in (2.5):
Term V represents the sink (source) of vorticity due to positive (negative) fluid-velocity
divergence, i.e. expansion (compression) of the carrier fluid. This term vanishes for
an incompressible single-phase flow. In a microbubble-laden flow, the carrier-fluid
velocity may locally have non-zero divergence since the continuity equation (2.4) can
be written as

∇ · U =
1

1 − C
[∂tC + U · ∇C] =

1

1 − C

DC

Dt
. (3.8)

In the regions of the flow field where DC/Dt is positive (negative) due to
bubble accumulation (dispersal), the carrier-fluid velocity field has positive (negative)
divergence. Consequently, term V reduces (increases) the magnitude of the local
vorticity in the flow regions where bubble accumulate (disperse).
Term III represents the advection of vorticity by the carrier-fluid velocity. This term
vanishes in the single-phase two-dimensional TGV since the velocity vector and the
gradient of the only vorticity component, ω2, are perpendicular to each other at each
point in the flow field.
Term IV represents the tilting and stretching of vorticity lines; it is

(ω · ∇)u = [ωk ∂kui] ei , (3.9)

where ei is the unit vector in the i-direction. This term contributes either to the
conversion of ωk to ωi for k 
= i or to the change in vorticity intensity caused by the
stretching or contraction of vorticity lines for k = i. For our two-dimensional TGV,
term IV equals zero.

(ii) The viscous terms II, VI and VII have the following meanings:
Term II represents the viscous diffusion of vorticity.
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Case I II III IV V

A(one-way) 7.9 × 10−6 7.9 × 10−6 0 0 0
A(two-way) 2.70 × 10−2 5.8 × 10−5 6.9 × 10−3 0 2.65 × 10−2

Case IV VII VIII IX
A(one-way) 0 0 0 0
A(two-way) 8.3 × 10−7 6.3 × 10−6 6.5 × 10−4 2.1 × 10−3

Table 3. Maximum magnitude of terms I–IX of (3.5) normalized by ω2
0 at time t = 0.2 in

case A with one-way and two-way coupling.

Terms VI and VII are due to the interaction of the bubble-concentration gradient
with the strain-rate tensor.

(iii) Terms VIII and IX are due to the two-way coupling force f between the
bubbles and the fluid.
Term VIII is the cross-product of the bubble-concentration gradient and f .
Term IX is the curl of f . The coupling force enhances or reduces the magnitude
of the vorticity depending on the alignment of ω and curl f . For example, in
particle-laden isotropic turbulence with the particle Stokes number larger than 1,
∇ × f enhances the decay rate of the vorticity because of the fluid–particle drag
interaction (see figure 17 of Ferrante & Elghobashi 2003).

Table 3 gives the computed maximum magnitude of each term of the vorticity
equation (3.5) normalized by ω2

0 at t = 0.2 in case A with one-way and two-way
coupling. In case A with one-way coupling, only terms I and II of (3.5) are non-zero
(they are O(10−6)) since (3.5) reduces to the vorticity equation of a single-phase TGV,

∂t ω = ν ∇2ω. (3.10)

In case A with two-way coupling, in contrast, the maximum magnitude of the time
rate of change of vorticity, term I , is approximately equal to term V , the sink or
source of vorticity due to the divergence of the fluid velocity (both terms are O(10−2)),
whereas all the other terms on the right-hand side of (3.5) are at least an order of
magnitude smaller. Furthermore, the instantaneous contours of terms I–IX (not
shown here) in the (x, z)-plane indicate that term I is approximately equal to term V

throughout the computational domain:

∂t ω � −ω (∇ · U). (3.11)

Thus, it can be stated that in a bubble-laden TGV the local instantaneous magnitude
of vorticity decreases when the local ∇ · U is positive and increases when it is negative.
Figure 9 displays the instantaneous contours of ∇ · U normalized by ω0 in case A
with two-way coupling at t =0.2; ∇ · U is positive (grey scale) in the circular zones
(radius � 0.05) located at the centres of the vortices (xc and zc), but is negative in the
ring-shaped but slightly squared regions (dark blue) surrounded by four spiral arms
(light blue), and is nearly zero elsewhere (lightest grey). The maximum value of ∇ · U ,
which occurs at the centre of the vortices, is positive and about eight times larger
than the magnitude of its negative peak (0.039 ω0 versus −0.005 ω0). Consequently, in
the regions of positive ∇ · U the decay rate of the vorticity is larger than that in the
case of one-way coupling (figures 7, 8 and 10). In the regions of small negative ∇ · U ,
term II results in a small increase in the magnitude of vorticity at t = 0.2, as shown
in figure 10 (at x =0.44 and 0.56).
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Figure 9. Instantaneous contours of ∇ · U/ω0 at time t = 0.2 for case A with two-way
coupling.

0. 0.4 0.5
x

0.6 0.7
–0.045

–0.030

–0.015

0∇ .u
ω0

0.015

0.030

0.045

0.3
–1.0

–0.8

–0.6

–0.4

–0.2

0

–––
ω

ω0

Figure 10. Instantaneous x-profiles of ∇ · U (solid lines) and ω/ω0 (dashed lines) at z = 0.5
and times t =0.1 (squares), 0.15 (triangles) and 0.2 (no symbols) for case A with two-way
coupling.

It is clear from the above discussion that ∇ · U is responsible for modulating
of the vorticity field of the bubble-laden TGV. We now discuss how the bubbles
produce a non-zero ∇ · U . The fluid continuity equation (3.8) shows that the ∇ · U
is proportional to the sum of ∂tC and U · ∇C. Figure 11 shows the instantaneous
x-profiles at t = 0.2 and z = 0.5 of these three quantities. It is clear that ∂tC is the
main contributor to ∇ · U in the vortex core (0.46 � x � 0.54) whereas both U · ∇C
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Figure 11. Instantaneous profiles of ∇ · U (solid line), ∂tC (dashed line) and U · ∇C (dotted
line) at z = 0.5 and time t = 0.2 for case A with two-way coupling.
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Figure 12. Instantaneous U vectors (solid arrows) and ∇C vectors (dashed arrows) at time
t = 0.2 for case A with two-way coupling.

and ∂tC have comparable effects outside the core. Figure 12 shows that the U and
∇C vectors are nearly perpendicular throughout the flow field; thus their dot product
is negligible compared with ∂tC. Since bubbles move along spiral trajectories (figure
3) towards the vortex centre, C increases in the vortex core (∂tC > 0) and decreases in
the surrounding ring (∂tC < 0), as shown in figure 11. Furthermore, the instantaneous
contours of ∂tC at time t = 0.2 (not shown here) resemble the contours of ∇ · U
(figure 9).
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Figure 13. Temporal development of Cm/C0 for case A: one-way coupling (dashed line);
two-way coupling (solid line).

It is of interest to comment on the experimental results of Sridhar & Katz (1999,
hereafter referred to as SK) using the vorticity equation (3.5). In their experiment, five
bubbles with 484 µm � db � 1100 µm were injected into a vortex ring. SK reported that
the buoyancy and pressure-gradient coupling forces (fi in (2.8)), imparted to the fluid
by the entrained bubbles, distort the vortex core and increase the maximum vorticity
and circulation. It should be noted that the local two-dimensional concentration C2D

of the bubbles in the vortex core of SK’s experiment is about 10−3, in contrast with
our present study where the initial C2D = 0.16 and the acceleration due to gravity
is set to zero. Although the five bubbles in SK’s vortex ring do not constitute a
continuum it can be shown that in SK’s experiment the magnitude of ∇ · U (see
(3.8)) is much smaller than that of (∇ × f )/(1 − C) (i.e. term V � term IX in the
vorticity equation (3.5)). Thus, whereas the concentration of a large number (105) of
microbubbles in our zero-gravity symmetrical TGV causes a significant reduction in
vorticity, the much smaller (by two orders of magnitude) concentration of very few
(five) larger buoyant bubbles increases the vorticity in the asymmetric vortex ring of
SK.

3.3.2. Two-way coupling effects on bubble concentration at the centre of the vortex

We now discuss the two-way coupling effects on the bubble concentration at the
centre of the vortex. The reduction in vorticity in the two-way coupling case, figure 7,
corresponds to a reduction in the magnitude of DU/Dt (the first term on the right-
hand side of (2.7)), compared with the one-way coupling case, in the neighbourhood
of the vortex centre (x = 0.0, 0.5, 1.0) (not shown here). Consequently, in the two-way
coupling case the bubble acceleration toward the vortex centre is reduced and thus the
maximum concentration of bubbles Cm(t) is smaller than that for one-way coupling
(figure 13). The difference between the values of Cm(t) in the two cases is negligible at
early times, t � 0.05 = 20τb, and becomes significant (>10%) for t � 0.09, when the
vorticity ωc(t) in the two-way coupling case is about 7 % smaller than that in one-way
coupling (figure 8). Figures 5 and 14 show the instantaneous concentration field in
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Figure 14. Instantaneous contours of the bubble concentration C at time t = 0.2 for case A
(with two-way coupling).
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Figure 15. The ratio ωc/ω0 vs. Cm for case A with two-way coupling: approximate
analytical equation (3.26) (dotted line); numerical solution (solid line).

the (x, z)-plane at time t = 0.2 in case A for one-way and for two-way coupling,
respectively. In both cases the isocontours of C are of nearly circular shape, but the
maximum concentration is reduced from 1.0 in one-way coupling to 0.35 in two-way
coupling. We expect that if the hydrodynamic interactions between the bubbles are
accounted for then the repulsion forces will keep the bubbles apart and thus the
maximum concentration in the vortex core will be smaller than that presented here.

We note that at time t = 0.2, when Cm = 0.35 (figures 13 and 14), ωc is reduced by
34 % from its initial value (figure 8). Figure 15 shows that the numerical solution for
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ωc (solid line) is nearly a decreasing linear function of Cm. The numerical ωc agrees
well with the approximate analytical solution (3.26) of the vorticity equation, which
will be discussed in the next section.

3.3.3. Analytical solution for the vorticity and bubble concentration at the vortex centre

The temporal development of the bubble concentration, Cm(t), and the fluid
vorticity, ωc(t), at the centre of the Taylor–Green vortex can be obtained analytically
provided that the Stokes number, St = τb ω0, is smaller than 1, and such that

St2 � 1, (3.12)

and that the viscous effects are small compared with the two-way coupling effects, i.e.
the non-dimensional viscosity divided by C0 is small,

ν/C0 � 1, (3.13)

which can also be expressed as

Re C0 � 1, (3.14)

where Re is the Reynolds number. Assuming that (3.12) and (3.14) are satisfied,
we can write the equations of vorticity and bubble-phase continuity in approximate
forms which are valid in the vicinity of the vortex centre. These coupled equations,
derived below, form a system of two first-order ordinary differential equations in
the unknowns Cm(t) and ωc(t). The analytical solution of these equations is then
evaluated and compared with the numerical solution.

Under the assumption (3.12), and neglecting the lift term in the momentum equation
for the bubble phase, (2.7), an approximate solution of (2.7) can be written in the
form (Maxey 1987a; Druzhinin & Elghobashi 1998)

V = U + 2τb

DU
Dt

+ O(St2). (3.15)

Substituting (3.15) into the bubble-phase continuity equation (2.6) we obtain

∂tC + ∇ · (CU) = −2τb∇ ·
(

C
DU
Dt

)
. (3.16)

Equation (2.4) can also be rewritten as

∇ · U =
1

1 − C

DC

Dt
. (3.17)

The second term on the left-hand side of (3.16) can be written via (3.17) as

∇ · (CU) =
C

1 − C

DC

Dt
+ U · ∇C; (3.18)

thus (3.16) becomes

1

1 − C

DC

Dt
= −2τb∇ ·

(
C

DU
Dt

)
. (3.19)

In the vicinity of the vortex centre (e.g. xc = 0, zc = 0), the fluid-velocity field can be
approximated by that of a ‘solid’ rotation whose intensity is ωc(t) = |ω(xc, zc, t)|, since
the rotational part of the fluid velocity is significantly larger than ∇ · U , as shown in
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figure 9. Thus the fluid-velocity components (see (3.1)) in the x- and z-directions are

Uc
1 � −ωc(t)

k2
z

k2
z,

Uc
3 � ωc(t)

k2
x

k2
x,

(3.20)

for |x| � 1 and |z| � 1, where kx and kz are the wavenumbers in the x- and z-directions
and k2 = k2

x + k2
z .

Substituting (3.20) into (3.19) we obtain

1

1 − C

DC

Dt
� 4k2

xk
2
z

k4
τb ω2

c C − 2τb

DU
Dt

· ∇C. (3.21)

At the vortex centre, the concentration of bubbles is a maximum, C(xc, zc, t) =Cm(t);
thus its gradient is zero and (3.21) becomes

C ′
m

Cm(1 − Cm)
� 4k2

xk
2
z

k4
τb ω2

c , (3.22)

where the prime denotes a first-order derivative with respect to time. The dynamics
of ωc(t) is described by the vorticity equation (3.6), which can be approximated via
(3.13) as

ω′
c � −ωc(∇ · U)c. (3.23)

At the vortex centre (3.17) becomes

(∇ · U)c =
C ′

m

1 − Cm

. (3.24)

Substitution of (3.24) into (3.23) gives

ω′
c

ωc

� − C ′
m

1 − Cm

. (3.25)

For an initial vorticity ω0 and bubble concentration C0, the time integration of (3.25)
gives ωc as function of Cm:

ωc

ω0

=
1 − Cm

1 − C0

. (3.26)

Substituting (3.26) into (3.22) and integrating the resulting equation over time gives
the temporal development of Cm as:

ln

(
Cm

1 − Cm

)
+

1

1 − Cm

+
1

2(1 − Cm)2

= ln

(
C0

1 − C0

)
+

1

1 − C0

+
1

2(1 − C0)2
+

4k2
xk

2
z

k4

St ω0

(1 − C0)2
t. (3.27)

The approximate analytical solution for the divergence of fluid velocity, (∇ · U)c, at
the vortex centre is obtained via substitution of (3.22) and (3.26) into (3.24) as

(∇ · U)c =
4k2

xk
2
z

k4
St ω0 Cm

(
1 − Cm

1 − C0

)2

. (3.28)

Figure 16 shows the temporal development of Cm for both the analytical (3.27) and
numerical solutions neglecting the lift term in (2.7). The analytical and numerical
solutions for case D (St = 0.1 and C0 = 0.01) are nearly identical. As the Stokes
number increases, from 0.1 to 0.25 to 0.5 for cases D, A and E, respectively, the
assumption (3.12) becomes less valid; thus the deviation of the approximate analytical
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Figure 16. Temporal development of Cm for cases A–E with two-way coupling. Approximate
analytical equation, (3.27): · · ·, A; · · ·�· · ·, B; · · ·�· · ·, C; · · ·�· · ·, D; · · ·�· · ·, E. Numerical
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Figure 17. Temporal development of ωc/ω0 for cases A–E with two-way coupling.
Approximate analytical equations (3.26) and (3.27): · · · · · · · · · · · ·, A; · · · · · ·�· · · · · ·, B;
· · · · · ·�· · · · · ·, C; · · · · · ·�· · · · · ·, D; · · · · · ·�· · · · · ·, E. Numerical solution with no lift in (2.7):
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solution Cm(t) from the more accurate numerical solution increases correspondingly.
Raising the initial concentration C0 from 0.001 (case B) to 0.02 (case C) increases the
accuracy of the analytical solution and enhances its agreement with the numerical
solution, since (ν/C0) becomes smaller and (3.13) is satisfied. Similar comments can
be made about the accuracy of the analytical solutions of ωc(t) and (∇ · U)c(t) shown
in figures 17 and 18 respectively.
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Figure 18. Temporal development of (∇ · U)c/ω0 for cases A–E with two-way coupling:
approximate analytical equations (3.28) and (3.27) (dotted lines); numerical solution with no
lift in (2.7) (solid lines). Symbols as in figure 17.

We now explain the effects of C0 and St on the temporal development of Cm, ωc and
(∇ · U)c. As C0 increases from 0.001 to 0.01 to 0.02 (cases B, A and C), while St is kept
constant, the number of bubbles moving towards the vortex centre increases and thus
both Cm and its growth rate C ′

m increase (figure 16). Similarly, as St increases from 0.1
to 0.25 to 0.5 (cases D, A and E), while C0 is kept constant, both Cm and its growth
rate C ′

m increase (figure 16) because the inward bubble acceleration toward the vortex
centre increases, as explained in § 3.2 for the one-way coupling case. Consequently,
both (∇ · U)c and the decay rate of ωc increase with an increase in either C0 or St

while the other parameter is kept constant (figures 18 and 17) because both Cm and
C ′

m increase in (3.24) and (3.25).
We now compare the results of (3.26) with the numerical solution in figure 15: the

maximum difference between the numerical and analytical solutions of ωc(Cm) is less
than 3 %. Equation (3.26) shows that ωc/ω0 is a linear function of Cm whose slope is
equal to −(1 − C0)

−1 � −1 and whose intercept is equal to (1 − C0)
−1 � 1; thus (3.26)

can be approximated as:

1 − ωc

ω0

� Cm. (3.29)

This equation and figure 15 indicate that the reduction in the magnitude of vorticity
at the vortex centre from its initial value is approximately equal to the bubble volume
fraction at the centre.

3.3.4. Effects of microbubbles on the temporal development of the mean enstrophy

We discussed in § 3.3.1 the effects of bubbles on the vorticity dynamics in a
TGV. We now investigate how the bubbles modify the temporal development of
the instantaneous mean enstrophy. The mean enstrophy (spatially averaged over the
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Figure 19. Temporal development of 〈ω2〉/〈ω2〉0 in the single-phase flow (nearly horizontal
solid line) and for cases A–E with two-way coupling: solid curve, A; dashed curve, B;
dashed-and-dotted curve, C; dotted curve, D; dashed-and-double-dotted curve, E.

Case C0 St tmin 1 − 〈ω2〉(tmin)/〈ω2〉0

A 0.01 0.25 0.197 0.0208
B 0.001 0.25 0.295 0.0030
C 0.02 0.25 0.184 0.0370
D 0.01 0.1 0.483 0.0211
E 0.01 0.5 0.104 0.0203

Table 4. Maximum reduction in 〈ω2〉(t)/〈ω2〉0 and the time tmin at which this reduction
occurs, for cases A–E with two-way coupling.

(x, z)-plane) is computed as

〈ω2〉(t) =
1

N2

N∑
i=1

N∑
k=1

ω2(xi, xk, t), (3.30)

where N is the number of grid points in the x- and z-spatial directions, xi = i∆x and
xk = k∆x. Figure 19 shows the temporal development of 〈ω2〉 normalized by its initial
value, 〈ω2〉0, for cases A–E with two-way coupling and the single-phase flow (SPF).
In the SPF the mean enstrophy monotonically decays in time because of viscous
diffusion:

∂t〈ω2〉 = ν〈∇2ω2〉. (3.31)

Figure 19 shows that, for t > 0 in cases A–E with two-way coupling, the enstrophy
〈ω2〉/〈ω2〉0 is smaller than that for the single-phase TGV and that the initial decay
rate of 〈ω2〉 in these five cases is larger than that for SPF. The figure also shows
that 〈ω2〉 first decays, reaches a minimum and then increases. The minimum of 〈ω2〉
occurs at a time, tmin, which increases as either St or C0 is reduced (table 4). Table 4
also shows that the maximum reduction in 〈ω2〉 from its initial value increases with
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C0 for fixed St (cases B, A and C) but remains nearly constant with increasing St for
fixed C0 (cases D, A and E).

The above observations about the temporal development of the spatial-mean
enstrophy in a bubble-laden TGV (figure 19) can be explained by the spatial-mean-
enstrophy equation, which is obtained from the approximate vorticity equation (3.11)
as

∂t ω
2 � −2 ω2 ∇ · U . (3.32)

Averaging (3.32) over the (x, z)-plane we obtain the spatial-mean-enstrophy equation:

∂t〈ω2〉 � −2〈ω2 ∇ · U〉. (3.33)

This equation indicates that the mean enstrophy decays if the spatial correlation of
ω2 and ∇ · U is positive, and vice versa. Bubbles reduce the mean enstrophy in the
TGV initially (0< t < tmin, figure 19) because their accumulation in the high-enstrophy
core regions produces a positive correlation between ω2 and ∇ · U . Figure 20 shows
that the correlation, which is 〈ω2 ∇ · U〉 = 0 at t = 0, increases with time, reaches a
maximum, decreases to zero at t � tmin (i.e. when 〈ω2〉 has a minimum) and then
becomes negative, since a negative, ∇ · U is correlated with high enstrophy in the ring
outside the core region (figure 10) whereas a positive ∇ · U is correlated with the
reduced enstrophy in the core region.

We now explain how 〈ω2〉(tmin) and tmin depend on C0 and St (figure 19 and table 4)
as mentioned earlier in this section. Since ∂tC is larger than U · ∇C in the vortex core,
as explained in § 3.3.1, the continuity equation (3.8) can be written as

∇ · U � ∂tC

1 − C
. (3.34)

Substituting (3.34) into (3.32) we have

∂t ω
2 � −2 ω2

(
∂tC

1 − C

)
. (3.35)
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Integrating (3.35) in time we obtain

ω2(x, t)

ω2
0(x)

� [1 − C(x, t)]2

(1 − C0)2
, (3.36)

where ω2
0(x) is the local enstrophy at time t = 0. Figure 21 shows the temporal

development of both sides of (3.36) for case A. The figure displays the validity of
(3.36), i.e. the proportionality of the decay in ω2(x, t) and the increase in C2(x, t),
especially in the core region. The discrepancy between the right-hand side and the
left-hand side in the outer ring (0.56 � x � 0.7) and (0.3 � x � 0.42) is due to neglecting
U · ∇C (see the remarks before (3.34)), which is of the same order of ∂tC in the ring
as mentioned in § 3.3.3 (figure 11). As C0 increases (cases B, A and C), while St is kept
constant, the number of bubbles moving towards the vortex core increases; thus both
C and its growth rate, ∂tC, increase in the vortex core. Consequently, ∇ · U increases
via (3.34) and ω2 decreases via (3.36) in the core, where (1 − C)2 < (1 − C0)

2. The net
result is that, as C0 increases, the correlation 〈ω2 ∇ · U〉 grows and decays in a shorter
time (figure 20); thus tmin decreases with C0 (table 4).

In § 3.3.3 we showed that as St increases, while C0 is kept constant (cases D, A and
E), the growth rate of Cm(t) and the decay rate of ωc(t) increase, i.e. the accumulation
of bubbles in the vortex centre and the consequent vorticity reduction occur in a
shorter time. Thus, as St increases, the temporal growth and decay rates of 〈ω2∇ · U〉
increase (figure 20) and the time tmin decreases (table 4). Furthermore, increasing St

while keeping C0 constant increases the growth rate of C in the vortex core. Thus the
initial decay rate of 〈ω2〉 increases with St , whereas the value of 〈ω2〉(tmin) remains
approximately the same (figure 19 and table 4).

4. Concluding remarks
The objective of the study that we have described in the previous sections is to

examine the effects of microbubbles on the vorticity dynamics in a two-dimensional
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Taylor–Green vortex flow (TGV). We have developed, for that purpose, a novel
predictor–corrector numerical method to solve the two-fluid (or Eulerian–Eulerian)
equations for bubble-laden flows with average bubble concentration C0 ∼ 10−2. The
main results of our study are as follows.

(i) Bubbles enhance the decay rate of the magnitude of the vorticity at the centre
of the vortex compared with that of the single-phase flow. For example, bubbles with
Stokes number equal to 0.25 and volume fraction 1 % reduce the magnitude of the
vorticity at the centre of the vortex, after 20 turnover times of the initial vortex, by
34 % as compared to that of the single-phase flow. Analysis of the vorticity equation
shows that the local positive velocity divergence of the fluid velocity, ∇ · U , created in
the vortex core by bubble clustering, is responsible for the vorticity decay.

(ii) At the centre of the vortex, the vorticity ωc(t), decreases nearly linearly with
the bubble concentration Cm(t). Similarly, the enstrophy in the core of the vortex,
ω2(t), decays linearly with C2(t).

(iii) Analysis of the approximate mean-enstrophy equation shows that bubble
accumulation in the high-enstrophy core regions produces a positive correlation
between ω2 and ∇ · U , which enhances the decay rate of the mean enstrophy.

This work was supported by ONR Grant No. N00014-05-1-0059, and the
computations were performed on the CRAY-T3E located at the US Army High
Performing Computing Research centre (AHPCRC), Minnesota.

Appendix A. Numerical-method details
In this section we describe our numerical method for solving the governing equations

(2.4)–(2.7) of a bubble-laden flow with two-way coupling, and in the next section we
describe the solution method for a flow with one-way coupling.

A.1. Two-way coupling

In order to solve (2.4)–(2.7) numerically, we rewrite the momentum equations (2.5)
and (2.7) as follows. The left-hand side of (2.5) can be written via (2.4) as

∂t [(1 − C) Ui] + ∂j [(1 − C) Ui Uj ] = (1 − C)[∂tUi + Uj∂jUi]

= (1 − C)[∂tUi + ∂j (UiUj ) − Ui∂jUj ]. (A 1)

On substitution of (A 1) into (2.5) and division throughout by (1 − C), the carrier-
fluid momentum equation in conservative form, (2.5), takes the quasi-non-conservative
form

∂tUi = −∂iP − ∂j (UiUj ) + Ui∂jUj +
ν

1 − C
∂j [(1 − C) (∂j Ui + ∂i Uj )]

− fi

1 − C
+ gi. (A 2)

Similarly, the bubble-phase momentum equation (2.7) can be written as

∂tVi = −∂j (ViVj ) + Vi∂jVj + 3
DUi

Dt
+

1

τb

(Ui − Vi) + [(U − V ) × ω]i . (A 3)

We define RUi , RC and RVi as follows:

RUi ≡ −∂j (UiUj ) + Ui∂jUj +
ν

1 − C
∂j [(1 − C) (∂j Ui + ∂i Uj )] − fi

1 − C
+ gi, (A 4)

RC ≡ −∂i(CVi), (A 5)
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Figure 22. Temporal development of Cm/C0 for case A with two-way coupling using three
different computational meshes: 96 × 2 × 96 (solid line), 128 × 2 × 128 (dashed line with
squares) and 256 × 2 × 256 (dotted line with triangles).

RVi ≡ −∂j (ViVj ) + Vi∂jVj + 3
DUi

Dt
+

1

τb

(Ui − Vi) + [(U − V ) × ω]i , (A 6)

such that (A 2), (2.6) and (A 3) can be rewritten in compact form as

∂tUi = −∂iP + RUi, (A 7)

∂tC = RC, (A 8)

∂tVi = RVi. (A 9)

Equations (2.4), (A 7), (A 8) and (A 9) are solved numerically using a newly
developed predictor–corrector method, similar to that described by Najm, Wyckoff &
Knio (1998) for simulating unsteady combustion in two dimensions. The main dif-
ferences between the present method and that described by Najm et al. (1998) are
given later in this section. Our predictor uses a second-order Adams–Bashforth time-
integration scheme to time advance the velocities Ui and Vi and the scalar field C.
Our corrector uses a second-order Crank–Nicolson time-integration scheme. In order
to satisfy the continuity equation for the carrier fluid, (2.4), a Poisson equation for
the pressure is solved in both the predictor and corrector steps, (A 16) and (A 25),
and a pressure correction is applied to the velocity field Ui , (A 18) and (A 27).
Although, the TGV flow studied here is two-dimensional, the numerical method uses
a three-dimensional algorithm, where the flow is homogeneous in the y-direction.
The three-dimensional computational domain contains two planes in the y-direction
and a mesh of 96 × 2 × 96 grid points in the x-, y- and z-directions respectively,
with uniform grid spacing. Grid refinement tests are performed on 128 × 2 × 128 and
256 × 2 × 256 grids. Figure 22 shows that the three different grids produce nearly
identical distributions of Cm(t)/C0. The scalar fields P and C are computed at the cell
centres, whereas the staggered velocity components are computed at the centres of
the cell sides. The spatial derivatives in (A 4) and (A 6) for RUi and RVi are computed
using second-order central finite differences. In order to ensure the positivity of the
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Figure 23. Temporal development of Cmin/C0 for case A with one-way coupling:
central-difference scheme (CDS) to discretize RC in (A 5) (dashed line); MUSCL-TVD scheme
to discretize RC in (A 5) (solid line).

scalar field C, we compute RC in (A 5) using a MUSCL-TVD (monotone upstream-
centred scheme for conservation laws – total-variation-diminishing) scheme (Van Leer
1979; Hirsch 1990, pp. 552–553) with the ‘Superbee’ flux-limiter function developed by
Roe (1985). Figure 23 shows that the minimum bubble-phase concentration C in case
A (one-way coupling) becomes negative at time t = 0.25 when using the second-order
central difference scheme, and stays positive in time when using the MUSCL-TVD
scheme.

The main differences between the present numerical method and that described
by Najm et al. (1998) are: (a) our algorithm is three-dimensional and theirs is two-
dimensional; (b) we implement the MUSCL-TVD scheme to discretize RC (A 5) and
so ensure the positivity of C; (c) we discretize the quasi-non-conservative form of
the momentum equation (A 2) and (A 4) whereas they use the conservative form (see
equations (2), (3), (12) and (13) from Najm et al. 1998); (d) we express the time
derivative ∂tC in (A 17) and (A 26) below using the bubble-phase continuity equation
(2.6), whereas they use second-order time discretization (see equation (15) from Najm
et al. 1998). The stability of our numerical method has been considerably enhanced
via (c) and (d).

Predictor The following seven steps, (a) to (g), constitute the predictor.
(a) The Lagrangian derivatives of the fluid-velocity components, DUn

i /Dt , which
are required to compute the coupling force f n

i from (2.8) and RV n
i from (A 6), are

evaluated as
DUn

i

Dt
= ∂tU

n
i + ∂j

(
Un

i Un
j

)
− Un

i ∂jU
n
j , (A 10)

where the superscripts indicate the time level, i.e. Un
i = Ui(x, tn), and

∂tU
n
i =

Un
i − Un−1

i

∆t
. (A 11)
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(b) The fluid–bubble coupling force f n
i , which is required to compute RUn

i in (A 13)
below, is evaluated using (2.8) and (A 10) as

f n
i = −Cn

(
DUn

i

Dt
− gi

)
. (A 12)

(c) Time integration of (A 7), without the pressure-gradient term, is performed
using the Adams–Bashforth scheme:

Û ∗
i − Un

i

∆t
= 3

2
RUn

i − 1
2
RUn−1

i , (A 13)

where Û ∗
i is the value of U ∗

i before the pressure correction (A 18) is applied. The
asterisk denotes the predicted value at time level n+1, i.e. the output of the predictor.
The time step used is ∆t = ∆x/256 for the 96 × 2 × 96 mesh.

(d) Time integration of (A 8) is performed according to

C∗ − Cn

∆t
= 3

2
RCn − 1

2
RCn−1. (A 14)

(e) Time integration of (A 9) is performed according to

V ∗ − V n
i

∆t
= 3

2
RV n

i − 1
2
RV n−1

i . (A 15)

(f) The following Poisson equation for pressure,

∇2P ∗ =
1

∆t
(∂iÛ

∗
i − ∂iU

∗
i ), (A 16)

written in finite-difference form (Gerz, Schumann & Elghobashi 1989) is solved using
a two-dimensional fast Fourier transform (FFT) in each (x, y)-plane and Gaussian
elimination in the z-direction (Schmidt, Schumann & Volkert 1984). In order to obtain
the right-hand side of (A 16), ∂iÛ

∗
i is computed using a second-order central-difference

scheme and ∂iU
∗
i is evaluated using the continuity equation of the carrier fluid (2.4)

as

∂iU
∗
i = ∂tC

∗ + ∂i(CUi)
∗ � RC∗ + ∂i

(
C∗Un

i

)
. (A 17)

(g) U ∗
i is updated by accounting for the pressure correction as

U ∗
i = Û ∗

i − ∆t ∂i P
∗. (A 18)

Corrector The following seven steps (a) to (g) constitute the corrector.
(a) The Lagrangian derivatives of the fluid-velocity components, DU ∗

i /Dt , which
are required to compute the coupling force f ∗

i from (2.8) and RV ∗
i from (A 6), are

evaluated as
DU ∗

i

Dt
= ∂tU

∗
i + ∂j (U

∗
i U ∗

j ) − U ∗
i ∂jU

∗
j , (A 19)

where

∂tU
∗
i =

U ∗
i − Un

i

∆t
. (A 20)

(b) The fluid–bubble coupling force f ∗
i , which is required to compute RU ∗

i in (A 22)
below, is evaluated using (2.8) and (A 19) as

f ∗
i = −C∗

(
DU ∗

i

Dt
− gi

)
. (A 21)
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(c) Time integration of (A 7), without the pressure-gradient term, is performed
using the Crank–Nicolson scheme:

Û n+1
i − Un

i

∆t
= 1

2

(
RU ∗

i + RUn
i

)
, (A 22)

where Û n+1
i is the value of Un+1

i before the pressure correction (A 27) is applied.
(d) Time integration of (A 8) is performed according to

Cn+1 − Cn

∆t
= 1

2
(RC∗ + RCn). (A 23)

(e) Time integration of (A 9) is performed according to

V n+1 − V n
i

∆t
= 1

2

(
RV ∗

i + RV n
i

)
. (A 24)

(f) P n+1 is computed by solving the following Poisson equation:

∇2P n+1 =
1

∆t

(
∂iÛ

n+1
i − ∂iU

n+1
i

)
. (A 25)

In order to obtain the right-hand side of (A 25), ∂iÛ
n+1
i is computed using a second-

order central-difference scheme and ∂iU
n+1
i is evaluated using the fluid-continuity

equation (2.4) as

∂iU
n+1
i = ∂tC

n+1 + ∂i(CUi)
n+1 � RCn+1 + ∂i(C

n+1U ∗
i ). (A 26)

(g) Un+1
i is updated by accounting for the pressure correction as

Un+1
i = Û n+1

i − ∆t ∂iP
n+1. (A 27)

We ensure that the governing equations (2.4) and (A 7)–(A 9) are satisfied at each grid
point of the computational mesh and at each time step by monitoring the residuals.
The maximum and minimum values of the difference between the left-hand side and
right-hand side in (A 7)–(A 9) computed instantaneously at each grid point of the
computational mesh are of the order of 10−13. The maximum and minimum values
of the left-hand side of (2.4) are of the order of 10−7, because of the approximation
used in (A 17) and (A 26). Similarly the conservation of the bubble concentration
C is satisfied at all times, as evidenced by the computed absolute value of the
error (C0 − 〈C〉)/C0, which remains smaller than 10−14. It should be noted that the
Lagrangian–Eulerian mapping (LEM) method proposed by Druzhinin & Elghobashi
(1998) for bubble-laden flow equations with one-way coupling is non-conservative.

Our results with two-way coupling show that the numerical solution obtained
using only the predictor steps described above is stable in time until Cm(t) reaches
approximately 0.25. The additional corrector steps stabilize the solution in time until
Cm(t) reaches 0.5 (figure 16).

A.2. One-way coupling

The numerical algorithm for solving the governing equations of bubble-laden flow
for one-way coupling, equations (2.11), (2.12), (2.6) and (2.7), differs from that of the
two-way coupling described above as follows.

(i) The definition of RUi , (A 4), becomes

RUi ≡ −∂j (UiUj ) + ν ∂j∂jUi + gi. (A 28)
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Figure 24. Temporal development of Cm/C0 for case A using the two-fluid and Lagrangian
methods with one-way and two-way coupling. Two-fluid, one-way (dashed line); two-fluid,
two-way (solid line); Lagrangian, one-way (dotted line); Lagrangian, two-way (dotted line
with circles).

(ii) In the Predictor steps (A 10) becomes

DUn
i

Dt
= ∂tU

n
i + ∂j

(
Un

i Un
j

)
(A 29)

and (A 12) is not computed.
In (f ) the Poisson equation (A 16) becomes

∇2P ∗ =
1

∆t
∂iÛ

∗
i , (A 30)

and (A 17) is not computed.
(iii) The corrector steps are not required since the numerical solution for one-way

coupling is stable when performing only the predictor steps. Thus, the starred values
of the predictor become the values at time level n + 1.

Appendix B. Comparison of the two-fluid and Lagrangian approaches
Here we compare the results of the Lagrangian and two-fluid simulations of the

bubble-laden TGV for case A (table 2). The governing equations and numerical
method of the Lagrangian simulation are given by Ferrante & Elghobashi (2005; see
§ 2 and the Appendix). The main difference between the two-fluid and Lagrangian
approaches is in the treatment of the dispersed phase. In the two-fluid (or Eulerian–
Eulerian) approach the bubble phase is considered as a continuum, characterized by
its instantaneous local concentration C(x, t) and its velocity V (x, t). In the Lagrangian
(or Eulerian–Lagrangian) approach the trajectory of each individual bubble is tracked
in time; thus the dispersed phase is characterized by the bubble positions xb(t) and
velocities V b(t). In the two-fluid formulation the local instantaneous bubble-phase
concentration C(x, t) is advanced in time by solving the bubble-phase continuity
equation (2.6), whereas in the Lagrangian formulation C(x, t) is computed from the
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Figure 25. Temporal development of ωc/ω0 for case A using the two-fluid and Lagrangian
methods with two-way coupling: two-fluid (solid line); Lagrangian (dotted line with circles).
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Figure 26. Temporal development of (∇ · U)c/ω0 for case A using the two-fluid and
Lagrangian methods with two-way coupling: two-fluid (solid line); Lagrangian (dotted line
with circles).

local number of bubbles Nb in a given computational cell of volume Vc as

C(x, t) = Nb(x, t)
πd3

b

6

1

Vc(x)
, (B 1)

where db is the bubble diameter.
In order to be able to compare the results of the Lagrangian and two-fluid

simulations, we use the same computational mesh (96 × 2 × 96 grid points) and



Effects of microbubbles on Taylor–Green vortex flow 175

z z

x
0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0 0.090
0.086
0.081
0.076
0.072
0.068
0.063
0.059
0.054
0.050
0.045
0.041
0.036
0.032
0.027
0.022
0.018
0.013
0.009
0.004
0

x
0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0 0.090
0.086
0.081
0.076
0.072
0.068
0.063
0.059
0.054
0.050
0.045
0.041
0.036
0.032
0.027
0.022
0.018
0.013
0.009
0.004

C C

Figure 27. Instantaneous contours of the bubble concentration C at time t = 0.1 for case A
(for two-way coupling): the two-fluid (left) and Lagrangian (right) approaches.
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Figure 28. Instantaneous contours of the bubble concentration C at time t = 0.1 for case A
(for two-way coupling) with a colour scale that differs from that in figure 27: the two-fluid
(left) and Lagrangian (right) approaches.

prescribe the same initial conditions for both. For the Lagrangian simulation we
release 460 800 bubbles (case A, table 2) with a uniform spatial distribution in the
computational domain (480 × 2 × 480 bubbles in the x, y and z directions), such that
the initial bubble-phase concentration is uniform and equal to 0.01 (case A), as in
(2.15) for the two-fluid approach. We set each initial bubble-velocity component equal
to that of the fluid at the bubble location, as in (2.14) for the two-fluid approach.

The temporal developments of Cm, (∇ · U)c and ωc obtained from the two methods
are nearly identical (figures 24–26). Since the CPU time of the Lagrangian simulation
is 42 times that of the two-fluid simulation, the Lagrangian simulation was stopped
at earlier times than the two-fluid simulation (figures 24–26). The instantaneous
concentration fields obtained with the two methods are in excellent agreement
(figure 27). However, in the regions where the local volume concentration is negligibly
small the two-fluid method implicitly introduces a local smoothing at the numerical
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grid scale. This limitation of the two-fluid approach is highlighted in figure 28, which
shows that where the local concentration is small (C < 0.003 < C0 = 0.01), e.g. in the
neighbourhood of the zero-vorticity lines (x =0.25), the two-fluid approach is unable
to detect the absence of bubbles (Cmin =0 for the Lagrangian simulation, whereas
Cmin = 0.0014 for the two-fluid simulation) because of the smoothing out of the
concentration field.
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